Variational principles, completeness and the existence of traps in behavioral sciences
نویسندگان
چکیده
In this paper, driven by Behavioral applications to human dynamics, we consider the characterization of completeness in pseudo-quasimetric spaces in term of a generalization of Ekeland’s variational principle in such spaces, and provide examples illustrating significant improvements to some previously obtained results, even in complete metric spaces. At the behavioral level, we show that the completeness of a space is equivalent to the existence of traps, rather easy to reach (in a worthwhile way), but difficult (not worthwhile to) to leave. We first establish new forward and backward versions of Ekeland’s variational principle for the class of strict-decreasingly forward (resp. backward)-lower-semicontinuous functions in pseudo-quasimetric spaces. We do not require that the space under consideration either be complete or to enjoy the limit uniqueness property since, in a pseudo-quasimetric space, the collections of forward-limits and backward ones of a sequence, in general, are not singletons.
منابع مشابه
A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملExistence and Uniqueness Results for a Nonstandard Variational-Hemivariational Inequalities with Application
This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-hemivariational inequality. The solutions of this inequality are discussed in a subset $K$ of a reflexive Banach space $X$. Firstly, we prove the existence of solutions in the case of bounded closed and convex subsets. Secondly, we also prove the case when $K$ is compact convex subsets. Fina...
متن کاملψ-pseudomonotone generalized strong vector variational inequalities with application
In this paper, we establish an existence result of the solution for an generalized strong vector variational inequality already considered in the literature and as applications we obtain a new coincidence point theorem in Hilbert spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016